Db2 to Looker

This page provides you with instructions on how to extract data from Db2 and analyze it in Looker. (If the mechanics of extracting data from Db2 seem too complex or difficult to maintain, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Db2?

Db2 is IBM's relational DBMS. IBM provides versions of Db2 that run on-premises, hosted by IBM, or in the cloud. The on-premises version runs on System z mainframes, System i minicomputers, and Linux, Unix, and Windows workstations.

What is Looker?

Looker is a powerful, modern business intelligence platform that has become the new standard for how modern enterprises analyze their data. From large corporations to agile startups, savvy companies can leverage Looker's analysis capabilities to monitor the health of their businesses and make more data-driven decisions.

Looker is differentiated from other BI and analysis platforms for a number of reasons. Most notable is the use of LookML, a proprietary language for describing dimensions, aggregates, calculations, and data relationships in a SQL database. LookML enables organizations to abstract the query logic behind their analyses from the content of their reports, making their analytics easy to manage, evolve, and scale.

Getting data out of Db2

The most common way to get data out of any relational database is to write SELECT queries. You can specifying filters and ordering, and limit results. You can also use the EXPORT command to export the data from a whole table.

Loading data into Looker

To perform its analyses, Looker connects to your company's database or data warehouse, where the data you want to analyze is stored. Some popular data warehouses include Amazon Redshift, Google BigQuery, and Snowflake.

Looker's documentation offers instructions on how to configure and connect your data warehouse. In most cases, it's simply a matter of creating and copying access credentials, which may include a username, password, and server information. You can then move data from your various data sources into your data warehouse for Looker to use.

Analyzing data in Looker

Once your data warehouse is connected to Looker, you can build constructs known as explores, each of which is a SQL view containing a specific set of data for analysis. An example might be "orders" or "customers."

Once you've selected any given explore, you can filter data based on any column available in the view, group data based on certain fields in the view (known as dimensions), calculate outputs such as sums and counts (known as measures), and pick a visualization type such as a bar chart, pie chart, map, or bubble chart.

Beyond this simple use case, Looker offers a broad universe of functionality that allows you to conduct analyses and share them with your organization. You can get started with this walkthrough in Looker's documentation.

Keeping Db2 data up to date

So you've written a script to export data from Db2 and load it into your data warehouse. That should satisfy all your data needs for Db2 – right? Not yet. How do you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow; if latency is important to you, it's not a viable option.

Instead, you can identify some key fields that your script can use to bookmark its progression through the data, and pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in Db2.

From Db2 to your data warehouse: An easier solution

As mentioned earlier, the best practice for analyzing Db2 data in Looker is to store that data inside a data warehousing platform alongside data from your other databases and third-party sources. You can find instructions for doing these extractions for leading warehouses on our sister sites Db2 to Redshift, Db2 to BigQuery, and Db2 to Snowflake.

Easier yet, however, is using a solution that does all that work for you. Products like Stitch were built to solve this problem automatically. With just a few clicks, Stitch starts extracting your Db2 data via the API, structuring it in a way that is optimized for analysis, and inserting that data into a data warehouse that can be easily accessed and analyzed by Looker.